Oxidation of a potassium channel causes progressive sensory function loss during aging
نویسندگان
چکیده
Potassium channels are key regulators of neuronal excitability. Here we show that oxidation of the K1 channel KVS-1 during aging causes sensory function loss in Caenorhabditis elegans and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In aging C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to those in wild type. Electrophysiological analyses showed that both reactive oxygen species (ROS) accumulation during aging and acute exposure to oxidizing agents acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K1 channels in sensorial decline during aging in invertebrates.
منابع مشابه
Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration?
A wealth of evidence underscores the tight link between oxidative stress, neurodegeneration and aging. When the level of excess reactive oxygen species (ROS) increases in the cell, a phenomenon characteristic of aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. Recently we showed that in the nematode, Caenorh...
متن کاملGenetics of hearing loss: focus on DFNA2
The purpose of this review is to assess the current literature on deafness nonsyndromic autosomal dominant 2 (DFNA2) hearing loss and the mutations linked to this disorder. Hearing impairment, particularly nonsyndromic hearing loss, affects multiple families across the world. After the identification of the DFNA2 locus on chromosome 1p34, multiple pathogenic mutations in two genes (GJB3 and KCN...
متن کاملA Mutation in Synaptojanin 2 Causes Progressive Hearing Loss in the ENU-Mutagenised Mouse Strain Mozart
BACKGROUND Hearing impairment is the most common sensory impairment in humans, affecting 1:1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. METHODOLOGY/PRINCIPAL FINDINGS The hearing...
متن کاملPotassium Channel Activator Attenuates Salicylate-Induced Cochlear Hearing Loss Potentially Ameliorating Tinnitus
High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent...
متن کاملBiophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease
Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...
متن کامل